Warning: file_put_contents(aCache/aDaily/post/neural/--): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Neural Networks | Нейронные сети | Telegram Webview: neural/9996 -
Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Kimi-Audio: открытая модель для аудиозадач.

Kimi-Audio — инструктивная модель с 7 млрд. параметров, разработанная командой MoonshotAI, которая объединяет распознавание речи, анализ аудиоконтента и генерацию ответов в реальном времени в единую архитектуру. Модель показала SOTA-результаты на множестве аудиобенчмарков, от распознавания речи до эмоционального анализа.

Архитектура Kimi-Audio — это 3 компонента:

🟢Гибридный токенизатор, который преобразует аудио в дискретные семантические токены (12.5 Гц) через векторное квантование и дополняет их непрерывными акустическими признаками из Whisper.

🟢Модифицированная LLM (на базе Qwen 2.5 7B) с общими слоями для мультимодальных данных и раздельными «головами» для генерации текста и аудио.

🟢Детокенизатор на основе flow matching и BigVGAN. Он превращает токены обратно в звук с задержкой менее секунды благодаря чанковому потоковому декодированию и look-ahead механизму.

Отдельного внимания заслуживает пайплайн обучения, к нему команда разработки подошла ответственно и скрупулезно: 13 млн часов аудио были обработаны через автоматический конвейер, включающий шумоподавление, диаризацию и транскрипцию.

Для повышения качества сегменты объединялись по контексту, а транскрипции дополнялись пунктуацией на основе пауз. После предобучения на задачах ASR и TTS модель прошла этап SFT на 300 тыс. часов данных (развернутые диалоги и аудиочаты).

В тестах ASR Kimi-Audio показала: WER 1.28 на LibriSpeech test-clean против 2.37 у Qwen2.5-Omni. В аудиопонимании она лидирует на ClothoAQA (73.18) и MELD (59.13), а в классификации сцен (CochlScene) показывает 80.99 — на 17 пунктов выше ближайшего соперника. В диалогах модель близка к GPT-4o (3.90 против 4.06 по субъективной оценке).


📌 Лицензирование кода : Apache 2.0 License.

📌 Лицензирование модели: MIT License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #KimiAudio #MoonshotAI
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/neural/9996
Create:
Last Update:

🌟 Kimi-Audio: открытая модель для аудиозадач.

Kimi-Audio — инструктивная модель с 7 млрд. параметров, разработанная командой MoonshotAI, которая объединяет распознавание речи, анализ аудиоконтента и генерацию ответов в реальном времени в единую архитектуру. Модель показала SOTA-результаты на множестве аудиобенчмарков, от распознавания речи до эмоционального анализа.

Архитектура Kimi-Audio — это 3 компонента:

🟢Гибридный токенизатор, который преобразует аудио в дискретные семантические токены (12.5 Гц) через векторное квантование и дополняет их непрерывными акустическими признаками из Whisper.

🟢Модифицированная LLM (на базе Qwen 2.5 7B) с общими слоями для мультимодальных данных и раздельными «головами» для генерации текста и аудио.

🟢Детокенизатор на основе flow matching и BigVGAN. Он превращает токены обратно в звук с задержкой менее секунды благодаря чанковому потоковому декодированию и look-ahead механизму.

Отдельного внимания заслуживает пайплайн обучения, к нему команда разработки подошла ответственно и скрупулезно: 13 млн часов аудио были обработаны через автоматический конвейер, включающий шумоподавление, диаризацию и транскрипцию.

Для повышения качества сегменты объединялись по контексту, а транскрипции дополнялись пунктуацией на основе пауз. После предобучения на задачах ASR и TTS модель прошла этап SFT на 300 тыс. часов данных (развернутые диалоги и аудиочаты).

В тестах ASR Kimi-Audio показала: WER 1.28 на LibriSpeech test-clean против 2.37 у Qwen2.5-Omni. В аудиопонимании она лидирует на ClothoAQA (73.18) и MELD (59.13), а в классификации сцен (CochlScene) показывает 80.99 — на 17 пунктов выше ближайшего соперника. В диалогах модель близка к GPT-4o (3.90 против 4.06 по субъективной оценке).


📌 Лицензирование кода : Apache 2.0 License.

📌 Лицензирование модели: MIT License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #KimiAudio #MoonshotAI

BY Neural Networks | Нейронные сети




Share with your friend now:
tg-me.com/neural/9996

View MORE
Open in Telegram


Neural Networks | Нейронные сети Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.Neural Networks | Нейронные сети from vn


Telegram Neural Networks | Нейронные сети
FROM USA